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Abstract. The plane quadratic lattice gas with nearest-neighbour exclusion and next- 
nearest-neighbour finite interaction is considered in the framework of the double-site and 
single-square approximations of the cluster variation method and in the branched lattice 
approximation. In addition to the disordered and hard-core-ordered phases only one 
extra phase is shown to exist which arises at low temperatures near the half-maximum 
density. This phase which is due to the next-nearest-neighbour repulsion exhibits both 
first- and second-order transitions to the disordered phase. 

1. Introduction 

In this paper we derive the closed-form approximations for the plane quadratic lattice 
gas model with nearest-neighbour exclusion and next-nearest-neighbour weak pair 
interaction. The previous studies of the model were based on the closed-form approxi- 
mations (Kaye and Burley 1974a, Aksenenko and Shulepov 1978), the exact finite 
method (Runnels et a1 1970), the series expansions (Springgate and Poland 1975, 
1979, Aksenenko and Shulepov 1979, 1981); in all these investigations the finite 
next-nearest-neighbour attraction was treated. The phase diagram calculated for this 
case contains the disordered and ordered phases which are separated by the coexistence 
region below the tricritical point and by the continuous phase transition line above 
:ti; Gaint. More recently the next-nearest-neighbour repulsion was treated by Kinzel 
and $chick (1981) using the phenomenological scaling method of Nightingale (1979); 
the procedure involved also the exact finite calculations. In addition to the disordered 
and hard-core-ordered phases mentioned above, the phase diagram constructed for 
this case contains the third phase which exists at low temperatures and is located in 
the vicinity of the half-maximum density. In fact this phase was first detected by 
Bellemans and Nigam (1967) who studied, among other models, the plane quadratic 
lattice gas with nearest- and next-nearest-neighbour exclusion, which can be regarded 
as a low-temperature limit for the lattice gas considered here, if a repulsion exists 
between the next-nearest neighbours. 

The models in which hard-core exclusion is attended by soft repulsion of more 
distant neighbours are interesting but not only in their own right. There is a wide 
variety of systems which can be described thermodynamically by such models, namely 
the localised adsorption monolayers. 
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The state of an atom adsorbed on a metal surface depends on the nature of the 
adsorption bond. Referring to Schrieffer (1972), Lyo and Gomer (1975), Bol’shov et 
al (1977) for the detailed reviews of chemisorption bonding, we shall point out here 
that in the case of either physisorption or chemisorption the adsorbed atom together 
with its electron distribution can form a dipole directed perpendicularly to the surface. 
Then for physical adsorption a dispersion attraction between the adsorbed atoms is 
superimposed on the dipoledipole repulsion, the latter prevailing at large distances. 
If an ionic bonding exists between the chemisorbed atom and the surface, then the 
dipole-dipole interaction dominates at almost all distances, acting through the vacuum 
half -space. In addition there exists a long-range oscillating exchange interaction via 
the electron gas of the adsorbent (Grimley 1967, Grimley and Walker 1969). 

If the size of the adsorbed atom does not exceed the distance between the adsorption 
centres on the surface, then the thermodynamics of such an adsorbed monolayer may 
be represented using Ising-type plane lattice gas models with extended interactions 
(see e.g. Domany et a1 1978, Shulepov and Aksenenko 1981). Here we particularise 
to the less extensively studied case when the hard-core diameter of an adsorbed species 
exceeds the lattice spacing, and a soft interaction exists between next-nearest-neigh- 
bouring atoms. These are for example the atoms possessing considerable electric 
charge (alkaline or alkali-earth elements) or dipole moments (rare gases) adsorbed 
on a metal surface, the dipoledipole repulsion being, in this case, the major contributor 
to the interaction. In the framework of the same model the next-nearest-neighbour 
attraction which may correspond to the dispersion forces existing between the atoms 
of gases adsorbed on, say, a graphite surface, can be treated similarly. 

The closed-form approximation methods used here are to complement the more 
accurate calculations for the following two reasons. Firstly, irrespective of their 
quantitative roughness, they provide a qualitatively correct description of the 
thermodynamics of the system by means of relatively simple analytical solutions. 
Secondly, the transfer matrix methods (Kinzel and Schick 1981) or the series- 
expansion technique can be used only provided the existence of the phase (the manner 
of the decomposition of the system) is established. In 0 2 we shall show that the three 
phases mentioned above exhaust the variety of the phases available for the system. 
Section 3 contains the results and the phase diagram of the system. 

2. Summary of calculations 

To account for the periodical density distributions over the lattice we define the 
sublattices into which the whole lattice can be decomposed. The existence of the hard 
cores implies the decomposition of the plane quadratic lattice into two interpenetrating 
quadratic sublattices a and b in such a way that the a sublattice site has four of its 
nearest neighbours on the b sublattice and vice versa. Each of these sublattices can 
be decomposed in a similar way, with sublattices 1 and 3 corresponding to the a 
sublattice, and sublattices 2 and 4 to the b sublattice. Since the interactions of the 
model extend to the second neighbours, further decomposition is unnecessary. Finally, 
the sublattices 1,2 and 3,4 may be composed to form the sublattices c and d represent- 
ing alternate parallel rows or columns on the lattice. The number density pi, i =  
a, b, c, d, 1 , 2 , 3 , 4  can be associated with each of the sublattices, the value of pi being 
equal to the probability of occupation of the ith sublattice site. These probabilities 
are normalised to unity; they are related to each other and to the total density p via 
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the equations 

%a = P1 +P3, 2sa =Pl-P3,  (1) 

2Pb =PZ+P4, 2sb = p2-p4- 

Here we have introduced ordering variables U ,  sa and sb ,  which describe the preferential 
occupation of certain sublattices. The potential energy E2 of the next-nearest-neigh- 
bour interaction enters the calculations through the Boltzmann factor 

t = exp(-E2/kT), (2) 

z = j o  exp(-El/kT), (3) 

and the activity is to be introduced, 

where io is the partition function for the internal degrees of freedom of the adsorbed 
particle, and E l  is the potential energy of interaction between the adsorbed particle 
and the adsorbent surface. 

2.1. Finite-cluster-variation approximations 

To obtain state equations which describe the thermodynamic behaviour of the lattice 
gas, one can use the finite cluster variation (FCV) method. To avoid duplication we 
refer to Hijmans and De Boer (1955), Woodbury (1967)  and Shulepov and Aksenenko 
(1981)  for detailed discussion of the procedure. Since the method is familiar and the 
calculations are not especially involved, we present here only the brief summary of 
the treatment. 

To construct the expression for the free energy function f = F/kT, where F is the 
Helmholtz free energy per lattice site, in the single-square approximation of the FCV 
method it is necessary to introduce two extra spanning variables wa and wb which 
represent the occupation of the square basic figure by two molecules on the a and b 
sublattices respectively. The minimisation of the free energy function with respect to 
the five variables U ,  sa, s b ,  war wb leads to a set of five simultaneous phase equations. 
It can be seen that some homogeneous and periodic density distributions (hereafter 
referred to as ‘phases’) can be generated from these equations, leaving the resulting 
set well defined: 

Phase I (disordered) U =o,  sa = sb = 0, 

In the following the Roman subscripts refer to the corresponding phases. 

between the equations in favour of four new reduced variables defined as follows: 
To obtain the solution it is most convenient to eliminate the spanning variables 
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Phase I corresponds to x, = x b ,  y ,  = y b  = 0, and may be calculated via the quadratic 
solution. Phase I1 was studied in single-square and double-square approximations by 
Kaye and Burley (1974 a, b) for the t > 1 case. To perform the calculations it is 
convenient to introduce 2x = x,, + x b ,  2q = x,, - x b .  Then eliminating q from the phase 
equations in favour of density one obtains the result via the cubic solution. This phase 
coexists with phase I along the line t = ( 3  - 8p)/4p(l- 2p). 

Phase I11 can be obtained from the phase equations with y = ya  = f y b  and x = x, = 
x b .  To obtain the solution one has to eliminate y 2  in favour of density. This procedure 
leads to a seventh-power equation in x with the coefficients dependent on p and t. 
The solution corresponding to phase I11 exists inside a region bounded by the phases 
I and I11 separation line t = -(3 - 14p + 12p2)(1 -6p +4p2)/16p(l -p)*(1-2p). With 
the numerical solution of the seventh-power equation and the y 2 ( p ,  t )  function, one 
can calculate the ‘adsorption isotherm’ In zIII(p, t )  and the equation-of-state curve 
r I I I ( p ,  t )  = p In zIII(p, t )  -fIII(p, t ) .  When tabulating these we found a loop occurring on 
the rIII versus p and zIII versus p isotherms in the vicinity of the high-density branch 
of the separation line as shown in figure 1, indicating a first-order transition existence 
in this single-square approximation hetween phases I and 111. 

It is evident from (4) that the region of phase IV existence, if any, is to be located 
within the phase I1 region, because the limiting case of phase IV, corresponding to 
sa = 0 is just the definition of phase 11. Similarly phase V can exist only inside the 
phase IV region. Expanding the phase equations at sa = 0, s b  = 0 to calculate the phase 
I1 and IV separation line coordinates, one obtains a set of two simultaneous equations, 
the first of them being just the equation for phase 11. Then tabulating the LHS of the 
second equation we found that, throughout the whole region of phase I1 existence, 
this expression never changes its sign. Thus phase IV and consequently phase V do 
not exist in this approximation. 

For completeness we performed similar FCV calculations using a pair of nearest- 
neighbouring sites as a basic figure and the mean-field-type approximation for energy, 
and were surprised by the variety of non-physical phenomena taking place along the 
phase I and I1 separation line at t < 1, including a first-order transition at sufficiently 
low temperatures and a discontinuity in the ordering parameter U .  These unusual 
features stem from the low order of the approximation; they are not produced by the 
single-square calculations. On the contrary, no phase I and I11 coexistence region 
was detected; phase IV was shown not to exist in this approximation. 

2.2. Branched lattice approximation 

There is another approximate procedure for calculation of the thermodynamic proper- 
ties of the lattice gas, termed the branched lattice (BL) method. The essence of this 
method is as follows: instead of calculation of the approximate expressions for the 
thermodynamic functions of the lattice gas considered, one can calculate these proper- 
ties exactly for some branched lattice, which is ‘locally equivalent’ to the original 
lattice. The values obtained in such a way are expected to provide a satisfactory 
approximation to the solution sought for. 

The BL approximations for phases I and I1 were obtained by Aksenenko and 
Shulepov (1978); these solutions were reproduced also in Aksenenko et a1 (1978) 
and Shulepov and Aksenenko (1981). To construct the solution for phase I11 we need 
to perform a similar procedure with an improved account for next-nearest-neighbour 
interaction. 
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Figure 1. The r versus p isotherm in single-square approximation for t = 0.05, showing 
three phases of system. Inset: magnified section of isotherm near the phase I and 111 
separation line. The horizontal line connects coexisting phases. 

The main point in the procedure of the BL method used here is the assumption 
that the lattice is built out of the two-site clusters step by step, the probabilities of 
occupation of preceding step clusters being related to those of current step cluster 
according to the interactions and the activities of the atoms involved in the cluster-to- 
cluster transfer. Then, assuming a homogeneous sublattice density distribution 
throughout the lattice one can close the chain of the expressions for the probabilities, 
thus obtaining the phase equations. To be concise we refer here to figure 2 of 
Aksenenko and Shulepov (1978) or figure 2.2.13 of Shulepov and Aksenenko (1981) 
where the procedure is described, noting that (i) the interactions are to be accounted 
for all four clusters involved, and (ii) since only three of four possible next-nearest- 
neighbour interactions can be represented in this branched lattice, another Boltzmann 
factor ti = t4'3 is to be introduced to remove in part this error. 
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We performed the calculations along these lines and obtained the solutions for 
phases I and 11, and the equations for the phases I and I1 and I and I11 separation 
lines. As the accuracy of the BL approximation will be shown in 0 2.3 to be intermedi- 
ate between those of double-site and single-square approximations, but the phase 
equations are much more involved, we did not attempt to calculate the thermodynamic 
properties for phase I11 and restricted ourselves to the construction of the phase 
diagram only. 

2.3. Accuracy of the approximations 

In spite of the qualitative similarity of the phase diagrams derived by means of various 
approximate treatments, the particular values of characteristic phase transition para- 
meters are rather different. To estimate the validity of approximate methods used it 
is a common practice to compare the solutions obtained using these methods for some 
limiting case of the problem considered, with an exact solution, if one exists. Unfortu- 
nately this is not the case, the only exact solution for the lattice gas with hard molecular 
cores being that of Baxter (1980) for the hard hexagons triangular lattice gas. 
Nevertheless we can compare our solutions with the results obtained for case B of 
Bellemans and Nigam (1967), which represent the low-temperature limit of the model 
considered here. Inasmuch as the double-site approximation cannot reproduce the 
thermodynamic functions of the next-nearest-neighbour exclusion model, we 
performed the calculations for another two approximations. The analytical solutions 
are available for phases I and 111. Comparing the first few terms of an exact series 
expansion for phase I11 derived by Bellemans and Nigam, 

1 -1/2 (1-4p)exact=g ( 1 + 2 ~ - ' / ~ + .  . .), 
with the expansions of the same quantity which can be obtained from our approximate 
solutions, 

1 -1/2 (1-4~)singlesquare"~~ (1+z- ' /*+.  * * I ,  
( 1 - 4 p ) b r a n ~ h e d I a t t i c e " ( 6 2 ) - ~ ' * ( 1 + 1 1 ~ 6 -  z * * 

3/2 - l / 2  

we conclude that single-square approximation provides a better estimate for phase 
I11 thermodynamic behaviour. 

3. Results and discussion 

We have shown that three phases can exist in the plane quadratic lattice gas with 
nearest-neighbour exclusion and next-nearest-neighbour finite interaction. Among 
them phase I is disordered in the sense that no periodical density distribution exists 
across the lattice, and hases I1 and I11 are ordered. 

when one of the sublattices U or b is preferentially occupied, the other being nearly 
empty. 

Phase I11 or (2 x 1) arises at low temperatures in the vicinity of the p = t point, 
when the second-neighbour repulsion leads to the existence of an ordered state with 
one of the two sublattices c or d ,  say c ,  almost close-packed; in every c row, in turn, 
one of the two sublattices, 1 or 2, which result from the decomposition of sublattice 
c, is occupied preferentially, but in such a way that p1=p2 throughout the whole 

Phase I1 or (42 x P 2) can exist due to the molecular hard cores at high densities, 
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lattice. In single-square approximation this phase coexists with phase I along the 
low-density branch of the coexistence curve; close to the high-density branch the 
coexistence region is located as shown in figure 2. 

t 

P 

Figure 2. The t versus p phase diagram obtained in (D), double-site; (B), branched lattice; 
(S), single-square approximations and (E) exact finite method-phenomenological scaling 
(Kinzel and Schick 1981) calculations. Also shown are (0) the exact series expansions 
result obtained by Gaunt and Fisher (1965) and Baxter et a1 (1980), and (0) the 
approximate transition point location calculated by Bellemans and Nigam (1967). The 
vertical scale changes at f = 0.2. 

In all the approximations used, no other phases were detected to exist. Since a 
well known feature of the closed-form approximations is the overestimation of the 
lattice system ability to undergo the phase separation, we believe this result to be 
valid in general. 

Phase transitions in the lattice gas with intermolecular attraction were discussed 
elsewhere (see e.g. Kaye and Burley 1974a, b, Runnels et a1 1970, Springgate and 
Poland 1979), and we concentrate here on the repulsion case t < 1. The phase diagrams 
obtained by various approximate methods are shown in figure 2. The less accurate 
double-site approximation (curves D) considerably distorts the phase diagram: the 
region of phase I1 existence is bound by the minimum value t = exp(-1), while phase 
I11 at extremely low temperatures extends over the whole range of density available 
for the system. This last feature is an expected one in view of the mean-field type of 
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the approximation used for the energy of the system. The phase diagrams obtained 
in the branched lattice and in the single-square approximation, curves B and S 
respectively, are more realistic. Also shown is the phase diagram obtained by Kinzel 
and Schick (198 1) using the exact finite method-phenomenological scaling approach 
(curves E). 

Maybe the most interesting feature of the model is the probable existence of the 
phase I and I11 coexistence region located close to the high-density branch of the 
phase separation line in the single-square approximation. Kinzel and Schick (1981) 
noted a first-order-like behaviour of the thermal exponent; by examining the isotherms 
it has been ascertained, however, that no first-order transition occurs at finite tem- 
perature. No serious doubts can be expressed against these considerations; it should 
be kept in mind, however, that the exact finite calculations (with lattice circumferences 
14 and less) might possibly not be precise enough to detect a rather narrow coexistence 
region. 
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